Chat Role
A "chat model" is an LLM that is trained to respond in a conversational format. Because they should be able to answer general questions and generate complex code, the best chat models are typically large, often 405B+ parameters.
In Continue, these models are used for Chat and Actions. The selected chat model will also be used for Edit and Apply if no edit
or apply
models are specified, respectively.
Recommended Chat models
Best overall experience
For the best overall Chat experience, you will want to use a 400B+ parameter model or one of the frontier models.
Claude Sonnet 3.5 from Anthropic
Our current top recommendation is Claude 3.7 Sonnet from Anthropic.
- Hub
- YAML
- JSON
View the Claude 3.7 Sonnet model block on the hub.
models:
- name: Claude 3.7 Sonnet
provider: anthropic
model: claude-3-7-sonnet-latest
apiKey: <YOUR_ANTHROPIC_API_KEY>
{
"models": [
{
"title": "Claude 3.5 Sonnet",
"provider": "anthropic",
"model": "claude-3-5-sonnet-latest",
"apiKey": "<YOUR_ANTHROPIC_API_KEY>"
}
]
}
Llama 3.1 405B from Meta
If you prefer to use an open-weight model, then Llama 3.1 405B from Meta is your best option right now. You will need to decide if you use it through a SaaS model provider (e.g. Together or Groq) or self-host it (e.g. using vLLM or Ollama).
- YAML
- JSON
- Together
- Groq
- vLLM
- Ollama
models:
- name: "Llama 3.1 405B"
provider: "together"
model: "llama3.1-405b"
apiKey: <YOUR_TOGETHER_API_KEY>
models:
- name: "Llama 3.1 405B"
provider: "groq"
model: "llama3.1-405b"
apiKey: <YOUR_GROQ_API_KEY>
models:
- name: "Llama 3.1 405B"
provider: "vllm"
model: "llama3.1-405b"
models:
- name: "Llama 3.1 405B"
provider: "ollama"
model: "llama3.1:405b"
- Together
- Groq
- vLLM
- Ollama
{
"models": [
{
"title": "Llama 3.1 405B",
"provider": "together",
"model": "llama3.1-405b",
"apiKey": "<YOUR_TOGETHER_API_KEY>"
}
]
}
{
"models": [
{
"title": "Llama 3.1 405B",
"provider": "groq",
"model": "llama3.1-405b",
"apiKey": "<YOUR_GROQ_API_KEY>"
}
]
}
{
"models": [
{
"title": "Llama 3.1 405B",
"provider": "vllm",
"model": "llama3.1-405b"
}
]
}
{
"models": [
{
"title": "Llama 3.1 405B",
"provider": "ollama",
"model": "llama3.1:405b"
}
]
}
GPT-4o from OpenAI
If you prefer to use a model from OpenAI, then we recommend GPT-4o.
- Hub
- YAML
- JSON
Add the OpenAI GPT-4o block from the hub
models:
- name: GPT-4o
provider: openai
model: ''
apiKey: <YOUR_OPENAI_API_KEY>
{
"models": [
{
"title": "GPT-4o",
"provider": "openai",
"model": "",
"apiKey": "<YOUR_OPENAI_API_KEY>"
}
]
}
Grok-2 from xAI
If you prefer to use a model from xAI, then we recommend Grok-2.
- Hub
- YAML
- JSON
Add the xAI Grok-2 block from the hub
models:
- name: Grok-2
provider: xAI
model: grok-2-latest
apiKey: <YOUR_XAI_API_KEY>
{
"models": [
{
"title": "Grok-2",
"provider": "xAI",
"model": "grok-2-latest",
"apiKey": "<YOUR_XAI_API_KEY>"
}
]
}
Gemini 2.0 Flash from Google
If you prefer to use a model from Google, then we recommend Gemini 2.0 Flash.
- Hub
- YAML
- JSON
Add the Gemini 2.0 Flash block from the hub
models:
- name: Gemini 2.0 Flash
provider: gemini
model: gemini-2.0-flash
apiKey: <YOUR_GEMINI_API_KEY>
{
"models": [
{
"title": "Gemini 2.0 Flash",
"provider": "gemini",
"model": "gemini-2.0-flash",
"apiKey": "<YOUR_GEMINI_API_KEY>"
}
]
}
Local, offline experience
For the best local, offline Chat experience, you will want to use a model that is large but fast enough on your machine.
Llama 3.1 8B
If your local machine can run an 8B parameter model, then we recommend running Llama 3.1 8B on your machine (e.g. using Ollama or LM Studio).
- Hub
- YAML
- JSON
- Ollama
Add the Ollama Llama 3.1 8b block from the hub
- Ollama
- LM Studio
models:
- name: Llama 3.1 8B
provider: ollama
model: llama3.1:8b
models:
- name: Llama 3.1 8B
provider: lmstudio
model: llama3.1:8b
- Ollama
- LM Studio
{
"models": [
{
"title": "Llama 3.1 8B",
"provider": "ollama",
"model": "llama3.1:8b"
}
]
}
{
"models": [
{
"title": "Llama 3.1 8B",
"provider": "lmstudio",
"model": "llama3.1-8b"
}
]
}
DeepSeek Coder 2 16B
If your local machine can run a 16B parameter model, then we recommend running DeepSeek Coder 2 16B (e.g. using Ollama or LM Studio).
- YAML
- JSON
- Ollama
- LM Studio
models:
- name: DeepSeek Coder 2 16B
provider: ollama
model: deepseek-coder-v2:16b
models:
- name: DeepSeek Coder 2 16B
provider: lmstudio
model: deepseek-coder-v2:16b
- Ollama
- LM Studio
{
"models": [
{
"title": "DeepSeek Coder 2 16B",
"provider": "ollama",
"model": "deepseek-coder-v2:16b",
"apiBase": "http://localhost:11434"
}
]
}
{
"models": [
{
"title": "DeepSeek Coder 2 16B",
"provider": "lmstudio",
"model": "deepseek-coder-v2:16b"
}
]
}
Other experiences
There are many more models and providers you can use with Chat beyond those mentioned above. Read more here